Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0012824, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483475

RESUMO

Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.


Assuntos
Aedes , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Feminino , Fertilidade , Dengue/prevenção & controle
2.
Sci Rep ; 14(1): 3094, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326355

RESUMO

Accurate species identification is crucial to assess the medical relevance of a mosquito specimen, but requires intensive experience of the observers and well-equipped laboratories. In this proof-of-concept study, we developed a convolutional neural network (CNN) to identify seven Aedes species by wing images, only. While previous studies used images of the whole mosquito body, the nearly two-dimensional wings may facilitate standardized image capture and reduce the complexity of the CNN implementation. Mosquitoes were sampled from different sites in Germany. Their wings were mounted and photographed with a professional stereomicroscope. The data set consisted of 1155 wing images from seven Aedes species as well as 554 wings from different non-Aedes mosquitoes. A CNN was trained to differentiate between Aedes and non-Aedes mosquitoes and to classify the seven Aedes species based on grayscale and RGB images. Image processing, data augmentation, training, validation and testing were conducted in python using deep-learning framework PyTorch. Our best-performing CNN configuration achieved a macro F1 score of 99% to discriminate Aedes from non-Aedes mosquito species. The mean macro F1 score to predict the Aedes species was 90% for grayscale images and 91% for RGB images. In conclusion, wing images are sufficient to identify mosquito species by CNNs.


Assuntos
Aedes , Culicidae , Animais , Redes Neurais de Computação , Asas de Animais , Processamento de Imagem Assistida por Computador/métodos , Alemanha
3.
Parasit Vectors ; 16(1): 418, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968721

RESUMO

BACKGROUND: Aedes japonicus japonicus (Theobald, 1901) and Aedes koreicus (Edwards, 1917) have rapidly spread in Europe over the last decades. Both species are very closely related and occur in sympatry. Females and males are difficult to distinguish. However, the accurate species discrimination is important as both species may differ in their vectorial capacity and spreading behaviour. In this study, we assessed the potential of geometric wing morphometrics as alternative to distinguish the two species. METHODS: A total of 147 Ae. j. japonicus specimens (77 females and 70 males) and 124 Ae. koreicus specimens (67 females and 57 males) were collected in southwest Germany. The left wing of each specimen was removed, mounted and photographed. The coordinates of 18 landmarks on the vein crosses were digitalised by a single observer. The resulting two-dimensional dataset was used to analyse the differences in the wing size (i.e. centroid size) and wing shape between Ae. j. japonicus and Ae. koreicus using geometric morphometrics. To analyse the reproducibility of the analysis, the landmark collection was repeated for 20 specimens per sex and species by two additional observers. RESULTS: The wing size in female Ae. koreicus was significantly greater than in Ae. j. japonicus but did not differ significantly for males. However, the strong overlap in wing size also for the females would not allow to discriminate the two species. In contrast, the wing shape clustering was species specific and a leave-one-out validation resulted in a reclassification accuracy of 96.5% for the females and 91.3% for the males. The data collected by different observers resulted in a similar accuracy, indicating a low observer bias for the landmark collection. CONCLUSIONS: Geometric wing morphometrics provide a reliable and robust tool to distinguish female and male specimens of Ae. j. japonicus and Ae. koreicus.


Assuntos
Aedes , Masculino , Feminino , Animais , Reprodutibilidade dos Testes , Europa (Continente) , Alemanha , Especificidade da Espécie , Espécies Introduzidas
4.
Parasit Vectors ; 16(1): 345, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794496

RESUMO

The spatial distribution of mosquito species in the course of globalization and climate warming is highly dynamic. Different studies have demonstrated the spread and establishment of thermophilic mosquito species, potentially increasing the prevalence of 'nuisance' mosquitoes and the local transmission of pathogens. Here we report the first recorded sampling of Anopheles hyrcanus in Wroclaw, southwest Poland. This is the most northern detection of this species to date in Europe. Future spread and population development of this potential vector of malaria parasites, viruses or zoonotic helminths, such as Dirofilaria spp., must be monitored carefully. Potential factors underlying the spread of this species are discussed.


Assuntos
Anopheles , Culicidae , Animais , Anopheles/parasitologia , Polônia , Mosquitos Vetores , Clima , Europa (Continente)
5.
One Health ; 16: 100572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363228

RESUMO

Culex pipiens s.s./Culex torrentium belong to the most widespread mosquito taxa in Europe and are the main vectors of Sindbis, West Nile and Usutu virus. The adult overwintering females can act as reservoir for these arthropod-borne viruses (arboviruses), thus contributing to their local persistence when transmission cycles are interrupted during the winter. However, the main overwintering sites of Cx. torrentium are unknown. In a study from 2017, 3455 Cx. pipiens s.s./Cx. torrentium specimens were collected from abandoned animal burrows in Poznan, Poland. These specimens were retrospectively identified to species-level with a PCR assay, which revealed Cx. torrentium as dominant species (> 60%). Motivated by these results, we conducted a field study from February to July 2022 to systematically analyse the overwintering site patterns of Cx. pipiens s.s./Cx. torrentium. Mosquitoes were sampled using pipe traps in abandoned animal burrows (n = 20) and with aspirators in nearby anthropogenic overwintering sites (n = 23). All Cx. pipiens s.s./Cx. torrentium were screened for Flaviviridae RNA. In total, 4710 mosquitoes of five different taxa were collected from anthropogenic sites. 3977 of them were identified as Cx. p. pipiens/Cx. torrentium (Cx. p. pipiens: 85%, Cx torrentium: 1%, pools with both species: 14%). In contrast, only Cx. p. pipiens/Cx. torrentium (1688 specimens) were collected from animal burrows dominated by Cx. torrentium (52%), followed by pools with both species (40%) and Cx. p pipiens (8%). A single pool of 10 Cx. torrentium specimens collected from an animal burrow was positive for Usutu virus. The detection of Usutu virus demonstrates that Cx. torrentium can act as winter reservoir for arboviruses. Abandoned animal burrows may by the primary overwintering site for the species and should be considered in future surveillance programmes, when sampling overwintering mosquitoes.

7.
Aquat Toxicol ; 177: 425-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27393920

RESUMO

Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50µS/cm to 11,000µS/cm) and coalmine-induced (100µS/cm to 2400µS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000µS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50µS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500µS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny.


Assuntos
Minas de Carvão , Eucalyptus/metabolismo , Salinidade , Austrália , Biomassa , Cromatos/toxicidade , Ecossistema , Ergosterol/análise , Eucalyptus/efeitos dos fármacos , Fungos/química , Fungos/efeitos dos fármacos , Fungos/metabolismo , New South Wales , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Cloreto de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...